📖 DefinitionÅk 7–9, Gymnasiet

Vad är funktion?

En funktion är en regel som tilldelar varje invärde (xx) exakt ett utvärde (yy).

Kort svar: Funktion en funktion är en regel som tilldelar varje invärde ($x$) exakt ett utvärde ($y$).

Förklaring

En funktion beskriver ett samband där varje xx-värde ger precis ett yy-värde. Vi skriver ofta f(x)=f(x) = \ldots där ff är funktionens namn och xx är variabeln. Till exempel betyder f(x)=2x+3f(x) = 2x + 3 att om x=4x = 4 så är f(4)=24+3=11f(4) = 2 \cdot 4 + 3 = 11. Funktionens definitionsmängd skrivs DfD_f (alla tillåtna xx-värden) och värdemängden skrivs VfV_f (alla möjliga yy-värden). Funktioner kan vara linjära (räta linjer), kvadratiska (parablar), exponentiella, och många fler typer. Grafen till en funktion klarar 'lodräta linje-testet' – en lodrät linje får bara skära grafen på högst ett ställe.

Ordets ursprung

Från latin 'functio' som betyder 'utförande' eller 'verksamhet'. Funktionen 'utför' en beräkning.

Exempel

Linjär funktion
f(x)=2x+1f(x) = 2x + 1

För varje xx-värde beräknas yy genom att dubbla xx och lägga till 11.

Beräkna funktionsvärde
f(3)=23+1=7f(3) = 2 \cdot 3 + 1 = 7

Sätt in x=3x = 3 i funktionen för att få y=7y = 7.

Kvadratisk funktion
f(x)=x2f(x) = x^2

Grafen blir en parabel. f(2)=4f(2) = 4, f(2)=4f(-2) = 4.

Inte en funktion
x2+y2=9x^2 + y^2 = 9 (cirkel)

En cirkel är INTE en funktion – ett xx kan ge två yy-värden.

Används inom

AlgebraAnalysFysikEkonomiDatavetenskap

Relaterade begrepp

Nyckelord

funktionf(x)invärdeutvärdegrafsambanddefinitionsmängdvärdemängd

Öva på funktion

Generera obegränsade matteövningar med PDF-export och facit.

Generera övningar (PDF + facit)